post

Volumetric or Ready Mix

What’s The Difference? 

Concrete is, without a doubt, one of the most common construction materials. This is because it can be used for a wide variety of projects. It is essentially a blend of water, Portland cement, and aggregates. The two basic types of concrete used in the construction industry are site-mixed concrete and ready-mix concrete. 

There are slight differences between these two types of concrete. It is important to be aware of the differences, even if they seem subtle to you, as doing so can make it easier to choose the right concrete for your project. Here are the major differences between site-mixed and ready-mix concrete:

Preparation 

One of the obvious differences between these two types of concrete is the way they are mixed. Ready-mix concrete is usually manufactured at a plant and delivered to the clients in a ready-to-use state. It’s typically sold by volume, which is measured in cubic meters. 

Site-mixed concrete, on the other hand, is prepared at the client’s construction location. The components are mixed in specific ratios to achieve different degrees of strength. When making this type of concrete, caution must be taken to avoid quality issues. 

Time

If you are working on a time-conscious project, it’s obvious that speed is important. In such a case, you should choose ready-mix concrete, as it’s easier to load and off-load, which may save you time.

Volumetric concrete is more time consuming to work with, as you have to pause part of the project while the mix is being created. 

Equipment

An important factor for any construction project is your equipment and where you can source what you need. Volumetric concrete requires the use of equipment such as batch mixers. Whereas, ready-mix concrete does not require the project owner to hire equipment, as the concrete is not made on-site.

Convenience

Ready-mix concrete is convenient for almost any kind of construction project, as it can be delivered to multiple sites within the project location. However, volumetric concrete has to be mixed as close as possible to the point of use to avoid contamination. 

Another major difference between ready-mix concrete and volumetric concrete is storage requirements. You will require controlled storage space for the materials used to make volumetric concrete. However, when using ready-mix concrete you won’t need any extra storage space. 

Quality

Ready-mix concrete has a better and more consistent quality when compared to site-mixed concrete. This is because ready-mix concrete is mixed in an automated and controlled environment. 

Material takeoff

The materials used to make site-mixed concrete have to be estimated individually and purchased separately. However, ready-mix concrete is simply calculated as a single item. 

Waste 

Working with site-mixed concrete causes material loss not only when the materials are being mixed but also during storage. Whereas, ready-mix concrete causes minimal waste on your site because the concrete is delivered in a ready-to-use state. 

Workforce

When working with ready-mix concrete, the only time you may require skilled labour is when pouring and compacting the concrete. However, you will require more man-hours when working with volumetric concrete.

In summary,  

Both types of concrete have some major differences. It is important to research which type of concrete is best for your construction project. Generally, ready-mix concrete is a better option as it can be used for a wider variety of projects.

if you have any questions make sure to contact us.

The post Volumetric or Ready Mix first appeared on Base Concrete.

post

Can You Pour Concrete in Hot Weather?

In Louisiana, it’s been exceptionally hot these past few days.

With a heat index of 109° F, concrete contractors in particular have had to take special precautions when pouring concrete outdoors.

There are many complications that come with pouring concrete in extreme heat, aside from health concerns.

Let’s take a look.

The risks of pouring concrete when it’s too hot outside

Fortunately (for the concrete only), in Louisiana, we don’t experience many low-humidity or windy days. These factors can complicate the pour and require special adjustments to be made.

The following issues can arise when pouring in extreme heat:

Decreased durability and strengthHigher risk of thermal crackingHigher risk of drying shrinkageCold joint formationsHigher risk of slumpingHigher risk of finishing problems

Is it possible to pour concrete in extreme heat?

When you hire the professionals at Port Aggregates, you can trust that our contractors know what they’re doing and are experienced in executing successful pours in a wide range of conditions.

In short, yes, it is possible to pour in extreme heat by taking the proper precautions:

Plan in advance. The mixed concrete will need to be poured more quickly than usual, so we always check our routes ahead of time to make sure there won’t be any delivery delays.Expand the size of the crew. The more hands on deck, the faster the job will be completed.Counteract the effects of the heat on the concrete during all stages of the pour. This may include blocking the sun with portable shade or tenting an area.

There’s a lot to consider when pouring concrete in extreme heat. To ensure that the job is done properly and all of the appropriate safety measures have been taken, contact Port Aggregates. There’s a reason we’ve been a trusted industry leader for over forty years! Request a quote today for help with your residential or commercial concrete project this summer.

The post Can You Pour Concrete in Hot Weather? appeared first on Port Aggregates.

post

Finding the Right Concrete Company for Your Commercial Project

Any business owner can expect to run into at least one concrete project during the span of their commercial business operation. Hiring the right concrete company for this project will be the difference between a good-quality, long-standing product and a cracked slab.

When looking for a commercial concrete contractor, there are several traits you’ll need to seek out.

The right concrete contractor will be:

1. Reputable

A concrete company’s reputation is just as important as the quality of the concrete it supplies, especially if you plan on working with this company for the long haul.

Check out the company’s reviews across the web and ask around to see who your friends or family may recommend. LinkedIn is a good place to ask other business owners for recommendations.

Ask past customers how the company in question ranks on communication, customer service, completion times, cleanliness, reliability, and price. After you’ve done your research, continue looking for a company that is both skilled and reliable.    

2. Skilled

You’ll want to hire a concrete company that specializes in your specific needs. For example, if you need a decorative concrete job done, don’t hire just any concrete company–hire one that is skilled in decorative concrete.

See if you can find pictures of the company’s work to assess their skill, and call to make sure they have all the materials in-house. If they don’t, you’ll need to pay extra for them to outsource the materials.  

3. Reliable

Reliability is one of the most important traits to look for in a concrete company. There’s nothing worse than hiring a contractor that shows up late, doesn’t follow the timeline, and fails to communicate about important changes.

The reliability of a company can also be proven through references and recommendations. Any professional company will be able to show you a portfolio or showcase pictures of their work.

At Port Aggregates, our skilled contractors have over 40 years’ worth of experience ingrained into our pours. You can view our work on our site or Facebook page, and contact us for specific images. Whether you’re looking to complete a residential or commercial concrete project, we’ve got you covered. Contact us today to request a quote

The post Finding the Right Concrete Company for Your Commercial Project appeared first on Port Aggregates.

Did you miss our previous article…
https://www.bellanovatravel.net/?p=86

post

How are Elevated Concrete Slabs Poured?

Elevated concrete slabs (also known as suspended concrete slabs) are most commonly found in commercial offices, parking garages, and other multistory heavy-use buildings. 

These pours require a bit more skill than your everyday residential concrete driveway and will need to be carried out by a professional contractor

Multiple factors are involved in pouring elevated concrete slabs, including the weight of the floor and the effect any additional loads will have on it. 

This is how it’s done.

1. The supporting walls are built according to the structural plans

The first step in pouring an elevated concrete slab involves building the supporting walls according to the structural plans. These walls can either be created out of reinforced concrete or concrete blockwork.

2. A crane is used to lower the metal into place

After the supporting walls have been constructed, a metal slab pan is lowered into place using a tower crane. This pan will be used as the framework for pouring and forming the elevated concrete slab. You can also use a system of connected preformed concrete panels instead.

3. Reinforced steel mesh is laid into the pan

Before the concrete is poured, reinforced steel mesh is laid into the pan and is lifted slightly off the floor using chairs (small metal supports) that are evenly spaced apart. This step is what gives the floor the strength necessary to support itself. 

In larger buildings, precast concrete floors that’ve been previously reinforced with tensile steel bars might be required for maximum strength. 

4. The concrete is poured and cured

Finally, after everything has been laid out and arranged according to plan, the concrete is mixed and poured in agreement with the structural engineers’ recommendations. 

The slab must then be left to cure for at least 48 hours before anyone can walk on it. The time it will take before anyone can park or drive on it will vary depending on several factors.

At Port Aggregates, our skilled contractors have over 40 years’ worth of experience built into our tried and trusted techniques. Whether you’re looking for a residential driveway, commercial suspended slabs, or precast concrete, we’ve got you covered. Contact us today to request a quote

The post How are Elevated Concrete Slabs Poured? appeared first on Port Aggregates.

Did you miss our previous article…
https://www.bellanovatravel.net/?p=80

post

What Can External Waterproofing Membrane Failure Teach Architects about Sustainable Construction?

No matter your experience with waterproofing membrane failure, waterproofing breaches are not so easy to spot. In fact, according to one article in The Construction Specifier, the most minor-looking of leaks could be a sign. Depending on where and how the waterproofing was installed, that can lead to costly excavation work for basements, vaults, tunnels, and water features. It can also lead to full removal or replacement of fixtures and finishes in certain spaces, such as commercial kitchens and lobbies.

Still, that’s why envelope engineers or other professionals conduct site visits before construction is completed, right? They make sure the external waterproofing membrane is placed properly and effectively to mitigate the risk and damage of a breach as much as possible.

That can certainly lead to a relatively long-lasting waterproof structure. But it’s neither the most risk-free nor the most sustainable solution. But what does that mean for your architectural work? What does the risk and reality of external waterproofing membrane failure mean for you?

It’s Not Always Better to Stick with Technology You’re Comfortable With

Many architects like yourself are very familiar with external membranes. You know how to inspect and install them. You can physically see and touch them to sort them out before they’re covered. In short, there’s a sort of reassurance that comes with external membranes. You know they are actually there, and you know exactly what to do if any issues come up.

That comfort can be a detriment at times, however.

No Matter Your Comfort with Them, Membranes Are Still High-Risk

Sure, you can see the external membrane and know the ins and outs of it. But that doesn’t mitigate the risk of the membrane failing. If anything, too much confidence in it can stop you from trying out a less liable waterproofing system.

And even if you are able to physically check a membrane that’s been applied to the positive side of a structure and felt comfortable with that inspection, that doesn’t mean the membrane will stay that way. For instance, the backfilling process can easily tear the membrane. That can fail the whole waterproofing system right there as there is often no opportunity to excavate the membrane to repair it. As a result, builders often turn to epoxy injections to attempt to fix cracks and leaks that show up in accessible areas of a concrete’s surface. That still leaves water outside of those areas to continue passing through the concrete, threatening its structural integrity.

Too Much Confidence in Membranes Can Lead to Poor Concrete Construction

While we have talked about the risk that comes with membranes so far, that doesn’t mean they don’t have a place in construction. They certainly can be used effectively. But when they’re relied on to function perfectly by themselves and project stakeholders haven’t weighed the risks of their application realistically, it can negatively impact the quality of concrete construction.

Take the crack-bridging ability that some membranes have, for instance. Often, stakeholders in a project have full trust in this ability to cover cracks in concrete and prevent water from reaching those cracks. They make the assumption that this ability won’t fail. As a result, they feel less worried about having to face the consequences if concrete does crack. That leads them to care less about how concrete placement, curing, and control joints are handled.

Compounding this fact, stakeholders also highly regard the diversity of membranes available on the market. There are enough choices available that membranes seemingly come with an infinite number of different accessories to mitigate risks. But even with those accessories, membrane failure is still a possibility. Once that happens, those accessories aren’t going to stop a construction team from a long, costly repair process.

A membrane’s accessories might make that last situation seem highly unlikely. But unfortunately, that’s just not the case.

Patches of a waterproofing membrane have come away from the structure they were protecting.

In Fact, External Waterproofing Membrane Failure Is Incredibly Common

As the Australian Institute of Waterproofing member Wet-seal notes, waterproofing makes up 80% of complaints during construction. It’s an impressive statistic considering waterproofing does not take up a huge chunk of the cost to construct a structure. Waterproofing typically only takes up 1% to 2% of that cost. So why are complaints so high?

A big reason for that is likely how easy it is for external waterproofing membranes to fail. It’s a pervasive enough issue that water intrusion is the cause for around 70% of construction lawsuits.

So, how does external waterproofing membrane failure get to be that big of a concern? Let’s look at the three most common reasons why.

One of the Main Culprits for This Is Simply Poor Preparation and Installation

At least 90% of waterproofing failures come from poor handiwork.

It’s not hard to see why either. Despite not being as costly as other parts of construction, waterproofing is no less complex. There are lots of factors to consider for it, and if one aspect isn’t considered carefully enough, a failure could be waiting around the corner.

A clock rests on top of a blueprint at a worksite next to other blueprint tools.

Poor Preparation Is Often Due to a Lack of Time

Builders need to make sure the surface of the substrate they want to apply a membrane to has the following qualities:

A smooth and clean exteriorFalls for drainageA space absent of formwork distortions, voids, and protrusions

To achieve these qualities, they need to spend time and attention on looking to see if the substrate surface has been spoiled by debris and residue and whether they need to scrape and vacuum it. Otherwise, without a pristine substrate surface, it is likely that a waterproofing application will not be successful.

An external membrane has fallen away from the concrete foundation it was applied to.

Poor Installation Is No Different

Builders have multiple items to install to ensure that a structure has an effective and thorough waterproofing system. Depending on the structure, that might mean knowing the correct installation procedure and executing it for the following products:

Waterstop anglesPerimeter flashingsVertical flashing anglesPressure strip flashingsChased drop flashingsControl jointsDrainage flangesCavity flashing downturnsReinforcing at junctionsOverflow devicesLinear strip drainsSlip joints

Not having the time to properly install even just one of these items can weaken the overall waterproofing system they’re a part of, making it more vulnerable to leaks.

In short, standing in the way of both proper waterproofing preparation and installation is time. Construction projects tend to run on tight schedules, so it can be tempting to skimp on the smaller details. Whether that’s quickly getting through backfilling and tearing a membrane unintentionally in the process or limiting quality assurance processes for faster work, it’s all done to help save what little time a project has. And while it might speed up a project in the short-term, the following repairs that result from this work will add up in the long-term to the project’s expenses.

The Second Culprit Is a Failure to Prime Areas Effectively

Waterproofing membranes, even self-adhering ones, require a primer during their application process. After all, builders want to ensure that their membranes remain bonded to a substrate for the life of the structure they’re waterproofing. And using a primer to prepare the surface of a substrate helps to enhance the adhesiveness of a membrane. It does so by reducing the porosity, dusting, air entrapment, and high-residual moisture of a substrate.

But it will only impart those qualities if builders prime the substrate surface effectively.

This is also an area that runs into issues with timing. When constructing homes, for example, a builder may not always accurately estimate how long it will take to prime the surface. As a result, they might schedule in tiling to be done in a bathroom and expect that the priming will only take a day or so. However, priming could take longer depending on the membrane, temperature, and weather conditions.

If the schedule is too tight, that could lead to a substrate surface with no priming, insufficient priming, or the wrong primer entirely. All of which can cause the membrane to debond. That creates gaps in the membrane system, leaving room for moisture to penetrate the substrate and weaken its structural integrity.

The Last Is a Lack of Insight into the Substrate’s Residual Moisture

Unsurprisingly, out of the top three common causes of external waterproofing membrane failure, moisture remains one of the bigger obstacles. All it takes is poor preparation, installation, or priming for moisture to enter the structure and wreak havoc.

But what if moisture was already surrounding the structure but had gone unnoticed? As you might have guessed by now, that’s a pretty common situation. And it likely stems from a lack of awareness at how much moisture content a substrate has.

Without an accurate estimate of moisture content using a tool like a moisture meter, there is a high chance that the substrate still has residual moisture. When left alone, that moisture can interfere with a membrane’s ability to bond to a substrate, causing structural weakness to occur.

A construction worker is waterproofing a flat roof with a bitumen-sealing membrane.

That Puts Membranes in an Awkward Spot When It Comes to Sustainability

Because it is so easy to damage membranes through application alone and because that damage can have severe consequences for a structure, membranes should not be considered the ideal sustainable solution. After all, you can’t call something sustainable if it can’t be upheld safely in an environment for a long time.

Though, it is true that not all membranes are going to fail immediately during application or afterwards. What about those then? Would we call the ones that can last without wear and don’t hurt their environment sustainable?  It’s debatable, but in this instance, the answer would still likely be no. And that’s because many membranes come with a short life span of around one to 10 years before they deteriorate.

After that, they need to be replaced. If they aren’t, then water damage is a more likely possibility. And if they are, then the building’s maintenance team needs to use up monetary and construction resources to get the same waterproofing protection.

All in all, it’s a very short-term version of sustainability that is draining resources at regular periods unnecessarily as there are long-term forms of waterproofing out there.

A tanker truck is driving through a foggy road.

Even Worse, Acquiring External Membranes Is Also Not That Sustainable

Even if you still want to stick with specifying and using external membranes, you may find it increasingly difficult to do so.

For One, There Is a Global Materials Shortage That May Hinder That

Between the ongoing pandemic, the past Suez Canal blockage, delayed and pricier shipping, and the mass blackouts in Texas that led to chemical plant shutdowns, there is a significant materials shortage going on.

And waterproofing membranes have not gone unscathed. Often made with plastics and other materials that typically require crude oil, membranes have been hit in both areas. Plastics are hard enough to get that companies like Acer and Dell are starting to create products with recycled plastic instead. Meanwhile, crude oil is in a different sticky situation. Instead of a shortage of the product itself, there’s a shortage of tanker truck drivers in the United States of America. At least 50,000 more drivers are needed. With the two materials harder to supply, that is going to make waterproofing membranes also harder to supply and will likely increase their costs as demand goes up for that shorter supply.

The general perception is that this might get better sometime in 2022 or a little later. But does that mean you should wait it out?

Even Without a Shortage, Membranes Will Still Be Non-Eco-Friendly

While only some membranes use plastic, almost all require crude oil in their manufacturing. And that doesn’t bode well for the environment. According to the University of Calgary’s energy education team, whether drilling for oil, transporting it, refining it, or using it otherwise, there is always an environmental impact. Extracting it, for example, destroys the land around it. And other oil industry activities can end up producing chemicals that contribute to smog or creating greenhouse gases that increase the effects of global warming. Moreover, if during any part of that process, the oil spills, it can impact the plants, soil, and well-being of animals, making the environment wholly toxic.

All of which is definitely not a way to maintain human well-being either, making membranes even less ideal for sustainability.

A construction worker is throwing a pulpable bag of KIM into ready-mix concrete.

Nowadays, There Are Better Alternatives Out There

And they come in the form of crystalline waterproofing admixtures.

To apply these products, builders have one step and that’s it. There’s no detailed handiwork or long time period required. All builders have to do is add your specified admixture into the concrete mix. From there, the mix will have the waterproofing properties it needs. It’s a short and sweet process that should permanently waterproof a concrete structure without the risk of application error.

The only real challenge you’ll come across is finding which crystalline admixture is right for you.

Just Look Up Your Options for Concrete Waterproofing Admixtures

The American Concrete Institute has classified these products under two categories: permeability-reducing admixtures for non-hydrostatic conditions (PRAN) and permeability-reducing admixtures for hydrostatic conditions (PRAH).

The first of the two we recommend for low-risk use. PRANs, as their name implies, are not meant to handle heavy water pressure. Instead, they are more designed to repel water. To that end, they often use water-repellant chemicals. These might involve soaps, vegetable oils, or even petroleum. Such materials work to leave a layer alongside concrete pores that repels water while still leaving the pores themselves open. However, PRANs can also make use of chemically active or inert fillers, which act as densifiers to limit how much water gets into concrete pores. In either case, you don’t get watertight waterproofing with them.

What you do get is a solid dampproofing solution. So you could use PRANs for projects that will encounter a little moisture ingress. That might involve using them to repel rain off a structure or  to minimize the structure’s dampness.

So, what about PRAHs?

Now, these are what you should really keep an eye out for. These are recommended for long-term waterproofing against heavy water pressure. They tend to use a hydrophilic polymer plug or crystal technology. And that creates waterproofing that is impervious to damage or deterioration and capable of bridging cracks in concrete.

It makes PRAHs a perfect option for watertight waterproofing in any concrete structure.

(For even more details on these waterproofing admixtures and more, get our free e-book on the topic!)

We Recommend Krystol Internal Membrane
™
(KIM) for Thorough, Sustainable PRAH Waterproofing

If you want a specific PRAH recommendation, we suggest KIM.

When you specify it, KIM gets added to the concrete mix where it disperses Krystol technology throughout the entire mix. That way, once the concrete cures, the technology will rest dormant throughout the slab until it encounters water. Once that happens, the technology will activate and react to the water and nearby unhydrated cement particles to create interlocking crystals (which you can visibly see react in a sample via time-lapse here!). These crystals go on to fill up capillary pores and micro-cracks in the concrete. That blocks the water from passing through.

And it does that for the entire life of the concrete as KIM remains within concrete permanently.

So you get lifetime waterproofing for the simple act of adding KIM to a mix. There’s less labor involved and no installation risks, which will save your construction team time and money, expediting their work in the process. There are no shortage issues. And even better, KIM comes with several sustainable advantages:

Reducing site disturbance by eliminating the need for excavationEliminating any possible waste it has by coming in custom-size pulpable bagsContaining no volatile organic compoundsHaving NSF certification for safe use with potable waterEnsuring KIM-treated concrete can be recycled post-demolition

So when you use KIM, you can earn LEED points while also benefitting from less labor-intensive and time-consuming permanent, tear-free waterproofing.

Las Vegas' CityCenter

Waterproofing Membrane Failure Is a Sign to Revolutionize Your Design

When you think about external waterproofing membrane failure and how common it is, consider what the alternatives are. There are many concrete waterproofing admixtures out there that could better solve the issues that come with membranes. And if you want one that gives you an edge in the LEED sustainability framework, you don’t have to look farther than KIM. It will revolutionize your architectural design and help it become the green watertight structure you’re looking for.

Free e-book! Download it today to learn about the four aspects to consider when specifying crystalline waterproofing admixtures.

The post What Can External Waterproofing Membrane Failure Teach Architects about Sustainable Construction? appeared first on Kryton.

post

Concrete Abrasion Resistance: The Bad, the Good, and the Better (Interview Part 3)

Last time in this interview series, we looked at just how effective Hard-Cem is as a solution for increasing concrete abrasion resistance. (For a recap, take a look at our first part and second part in this interview series!)

Unlike conventional surface-applied products, Hard-Cem has a worry-free application process. And on top of that, it has been proven to be effective through third-party testing. Part of that testing involved a modified ASTM C627 test, which showed just how resistant Hard-Cem made concrete to abrasive forces.

However, that’s not all it has going for it. Hard-Cem can also help construction professionals with their sustainability efforts. To see how, we asked Kryton Technical Director Jeff Bowman for more insight.

First, why don’t we review the environmental concerns surrounding concrete?

I’m sure many people are aware that roughly, for every 1 ton of Portland cement that’s manufactured, 1 ton of CO2 is released into the atmosphere. But of course, we don’t make buildings out of cement. We make them out of concrete. So I think it’s more useful to look at the final carbon load of the concrete itself.

Where can we learn about the final carbon load of concrete?

Now, there are many industry resources for this. The one that I’d like to draw from today is the Canadian Ready-Mixed Concrete Association’s environmental product declaration. It has a wide range of information and breaks concrete down by strength class. It also publishes industry benchmarks for each strength class.

But for just a broad view of the information displayed, you can see that depending on the concrete strength and many other factors, the carbon load of that concrete is normally going to range about 250 kg to 500 kg of CO2 per cubic meter of concrete.

That’s a significant environmental investment. So you really want to make sure your concrete is going to be durable and last a long time with minimal maintenance.

How does Hard-Cem help mitigate this carbon issue?

Well, first of all, just by having Hard-Cem reduce the wear and tear of abrasion on a concrete slab, you’re reducing, delaying, and often preventing some of that maintenance activity you’d otherwise need to do to replace that concrete or grind it down and resurface it. You can avoid using more concrete to fix it at a later time.

Hard-Cem-treated concrete (as seen on the right) can get double the wear life and an increased resistance to abrasion and erosion compared to regular concrete (as seen on the left).
Hard-Cem can also help you make more efficient choices with your concrete. Sometimes, the structural requirements of a project are satisfied with a typical mid-strength concrete.

But to ensure good abrasion resistance, a higher strength concrete is used instead. This increases the carbon footprint and is an inefficient use of resources. Hard-Cem may allow the lower strength option to be used instead while still designing for abrasion resistance. This can allow the use of more environmentally efficient concrete without sacrificing abrasion performance.

So, Hard-Cem can help reduce the carbon footprint now and down the road?

Yes, it can.

Remember, depending on the application, oftentimes, a higher strength concrete may introduce some problems that are actually detrimental to the overall performance of the job, such as increased shrinkage, cracking, and curling.

So using a more conventional mix with Hard-Cem can help you avoid these problems while still achieving excellent abrasion durability.

To get high-strength concrete, builders can add more silica fume or cement. However, silica fume’s maximum abrasion resistance increase is 13%. And to double that resistance with cement, builders would need 80% more cement content.

What about Hard-Cem’s carbon footprint?

The carbon footprint of Hard-Cem is very small. It’s only a percentage or two of the overall mix. As we often see with admixtures, it gives you very good performance value relative to its environmental impact.

What does all that mean for the lifetime carbon footprint of a structure?

Being able to produce a sustainable mix now is a very worthy goal. But it’s true that it’s also important to take a look at the lifetime carbon footprint of that structure. Depending on the maintenance and replacement cycle, the lifetime carbon footprint can be much higher than the original construction cost.

Now, we have a really interesting case study on this: the New Afton Mine. This is near Kamloops, British Columbia, Canada, and was built in 2011.

In the ore collection and processing area, within three years, the mine had so much wear and tear just from the mining equipment. And with the ore on the ground being pressed into the concrete and ground between those wheels, the owners had to replace, not just resurface but replace, the concrete in that area within only three years. So they were set on a three-year replacement interval, which is not very sustainable.

But in 2014, they replaced it with Hard-Cem concrete, and that concrete is still performing today. So what you can see here is that by investing in durability, they’ve been able to skip at least two replacement events. And they’re actually partway through what would have been their third.

Ever since Hard-Cem was added into replacement concrete for the mine, the mine has provided six continuous years of service without the need for more concrete replacement work.
 

In short, Hard-Cem has reduced the lifetime carbon footprint by almost 50%. And that’s just so far.

Thank you for all that detail, Jeff! It seems that Hard-Cem really will protect concrete against abrasion better than traditional methods. It’s also easy to install and doesn’t change a concrete mix’s properties. And on top of that, it reduces your carbon footprint, increases the durability and life cycle of your concrete, and has been in successful performance for years. What more could you ask for from a concrete hardening solution!

Finding the best product to increase concrete wear life isn't hard. It's Hard-Cem. Click here to learn more.

The post Concrete Abrasion Resistance: The Bad, the Good, and the Better (Interview Part 3) appeared first on Kryton.

post

4 Benefits of Using Concrete for Your Commercial Flooring

When it comes to commercial flooring, concrete is one of the most popular choices.

For both creative and practical reasons, many businesses typically choose concrete floors for their stores, patios, and walkways. 

On top of being durable and easy to install, this type of flooring also offers an array of other benefits, including:

1. Infinite design possibilities

Concrete flooring is available in a wide range of colors and patterns. Any hue can be created to accent your commercial property’s interior.

In addition to picking from an array of beautiful colors, you can also create a unique custom design. For example, you may want a pattern or logo that matches the branding of your business. Some concrete contractors are even capable of creating specialty textures with stamped concrete that replicate wood grain or natural stone materials.

2. Easy to clean

If you have a high volume of foot traffic in your commercial property, concrete is the perfect flooring option. Not only does it withstand heavy use and wear and tear, but concrete floors don’t absorb dirt or moisture, making spills much easier to spot and wipe up. All you need is a mop or broom

Concrete floors are also more resistant to water damage, so your property is better protected against leaks and spills that can cause significant damage otherwise.

This type of flooring also doesn’t harbor allergens or bacteria, so it’s perfect for high-traffic facilities like hospitals where many people may be affected by dust particles and other allergens that accumulate in carpets or rugs.

3. Reduces noise pollution and energy costs

Concrete offers a high degree of sound insulation, which can be especially useful in the workplace.

If you work in an environment where there’s a lot of phone conversations and meetings taking place throughout the day, concrete floors will act as an effective barrier against the noise, rather than amplifying it like carpet does.

Additionally, concrete floors will also help keep your energy bill down in the long term because they offer a high degree of thermal insulation. This means that you won’t have to adjust your heating and cooling system as much throughout the winter or summer months.

4. Lasts up to 40 years

Concrete floors can last for decades (up to 40 years) as long as they’re properly maintained and installed.

With this type of flooring, you won’t have to deal with the hassle of replacing materials every few years, saving you time and money in the long term. However, it’s important to note that concrete isn’t perfect; you will likely need to repair a few cracks here and there as time goes on. Otherwise, these imperfections will compromise the integrity of your flooring and make it susceptible to further damage.

Fortunately, these types of repairs are relatively minor and can be completed in a matter of hours by a professional contractor without too much trouble. 

While there are many distinct advantages to using concrete for your commercial flooring, the success or failure of your project ultimately depends on picking the right contractor. Our professionals at Port Aggregates are highly skilled in creating beautiful, precise pours every time. Contact us today to request a quote

The post 4 Benefits of Using Concrete for Your Commercial Flooring appeared first on Port Aggregates.

Did you miss our previous article…
https://www.bellanovatravel.net/?p=46

post

Interview: Why Krytonite™ Is the Unsung Hero of Construction Joint Waterproofing

When you think of general concrete waterproofing, you probably envision membranes or crystalline waterproofing admixtures. But those aren’t the only aspects you need to consider for waterproofing. In fact, you should think of them as part of a more holistic approach to waterproofing. With only membranes or concrete admixtures, you’re not protecting your entire structure from water ingress. You’re missing out on protection for areas like tie holes, pipe penetrations, construction joints, and control joints.

It only takes one of those areas to remain exposed to water for there to be a water ingress problem. After all, as the Construction Waterproofing Handbook notes, 90% of water ingress issues happen within only 1% of the total structure’s surface.

That’s why you need solutions like our Krytonite
™
Swelling Waterstop, which seals concrete construction joints, protecting them from water. Such solutions, however, aren’t always given the attention they deserve.

To see why that is and why changing that in favor of Krytonite and more is better, we’ve turned to our territory manager for the Eastern United States, Christian Warren. With over 13 years of technical territory sales and operations management experience in concrete waterproofing construction and a background in ready-mix quality control, Christian knows just how valuable it is to give each concrete detail its due. And it’s why he’ll be discussing the value of Krytonite with us today.

Thank you for joining us here, Christian. While all aspects of waterproofing are necessary, waterstops like Krytonite are not often the first part to come to mind for builders. Why is that?

Thanks for inviting me.

As you mentioned, waterstops tend to not get the spotlight that’s needed. As they’re encased inside concrete, it becomes easy to forget about them (it’s like the old saying goes: “out of sight, out of mind”). That’s the case for both waterproofing successes and failures.

Successes tend to be attributed to the whole waterproofing system. And failures are no different. In either situation, it’s difficult to diagnose the waterstop’s successful contribution to the waterproofing system because it takes destructive techniques to the concrete joint to even see the waterstop’s condition.

What about Krytonite itself? What makes it stand out from the other waterstops on the market?

While the installation of Krytonite will be familiar to those who have installed bentonite or other swelling waterstops, the performance of the product is top-level.

For performance comparison, bentonite waterstops offer entry-level capabilities. They’re often inexpensive and mostly ineffective, even in low-risk applications. Part of that is due to their uncontrolled swelling and inability to hold up through wet-dry cycles. Because of that, there is a risk of the concrete blowing out due to high internal pressures, damaging the structure and incurring high maintenance costs as bentonite waterstops deteriorate quickly due to their clay-based composition.

Meanwhile, Krytonite offers greater performance. It’s designed with advanced elastomeric hydrophilic polymers, which is a superior form of technology to that of bentonite. As a result, Krytonite offers better compression sealing, stability, and longevity.

For compression sealing, Krytonite can swell more than 10x its original size. That is up to 4x more than competitors. And with its unique trapezoid shape, Krytonite can minimize the possibility of voids in the concrete.

For stability, Krytonite takes advantage of controlled swelling that allows for proper concrete strength development. It also ensures that Krytonite will never blow out the concrete due to unchecked internal pressures.

And for longevity, Krytonite is made to be cohesive, remaining intact for the life of the concrete structure. It’s a stark contrast to bentonite waterstops, as those are expected to disintegrate eventually, especially under extreme conditions and constant wet-dry cycling.

Of course, the greater value with Krytonite is not just the top-level performance but its cost and warranty. How Kryton has priced it and given it a 10-year limited warranty makes this waterstop a huge value add. It ensures that contractors can get guaranteed top-level performance for entry-level pricing with Krytonite.

So, Krytonite comes with great performance and value. A significant factor for the performance side of things seems to be the product’s superior swelling. Just how does that work? And for how long?

So, Krytonite will swell only in the presence of water. Depending on that water’s source and where the Krytonite is situated, contractors will see variations in that swelling. For instance, to see Krytonite swell up to 1,000% of its size, the waterstop would have to be unconstrained and come into contact with clean water. But when it’s placed within a joint, Krytonite will only expand as much as necessary. So that means expanding until it has enough pressure to stop the flow of water.

Krytonite will stay that way so long as there is water present.

Can it seal more than just construction joints with this ability?

Yes, you can use Krytonite to seal around other items fully embedded in concrete. These might be pipes, studs, or tie rod sleeves.

Is it able to withstand water contaminated with salts, acid, or hydrocarbons?

Whether the water has salt, acid, or hydrocarbon contamination, Krytonite will still be able to activate and operate as normal. It’s all thanks to its unique synthetic rubber technology. Because of the technology’s cohesive properties, Krytonite will not deteriorate if it encounters contaminated water.

Still, to maintain quality, I recommend that contractors confirm the Krytonite’s stability with Kryton’s technical department if the contaminated water levels are particularly high.

How do you get Krytonite to adhere to concrete? Does it matter if the surface is damp?

To get Krytonite to adhere to concrete, you should first apply Krytonite Adhesive along the center of the construction joint. Then, press the Krytonite into the adhesive. When doing this, you should have enough adhesive on the surface that it comes out the sides of the pressed Krytonite.

This is the most optimal way of making sure that Krytonite stays firmly attached to the concrete surface.

That remains the case even if the concrete surface is damp as the adhesive can keep Krytonite up off the damp surface enough for the Krytonite to bond properly. That only works, however, if the surface is not too wet and is free from debris and pooling water.

Of course, if you’re set on using a different adhesive, the next best option is a one-component polyurethane construction adhesive.

Once applied, will it need protection?

Yes. It is possible for Krytonite to tolerate some early water exposure, but you should still take care to protect it from as much rain and moisture as possible before pouring concrete. Otherwise, the Krytonite could end up debonding.

To prevent that from happening, make sure the Krytonite is fully shielded from weather and moisture. A way to accomplish that might involve covering it with plastic to put a barrier between it and any possible water ingress.

Is there anything you’d recommend adding with Krytonite to waterproof construction joints and details?

While Krytonite will do an excellent job at protecting concrete construction joints and other small details, it works best with the KrystolWaterstop System. Under that system, you have Krytonite as well as Krystol Waterstop Treatment
™
, Krystol Waterstop Grout
™
, and Crack Inducing Waterstop.

When used in varying combinations, they can offer contractors a robust waterproof jointing system that’s available for low- and high-risk areas.

For low-risk areas, contractors can bring their concrete to a saturated surface-dry (SSD) condition and then coat it with the Krystol Waterstop Treatment. The Krystol technology in that treatment will react to water and unhydrated cement particles to form crystals that stop water from passing through. Then, the contractor can install the Krytonite to the concrete, further sealing the joint from water.

That acts as double protection for a structure that isn’t expecting to see a heavy amount of water ingress.

For higher risk areas, this system offers triple protection. That requires the same SSD condition and the same Krystol Waterstop Treatment and Krytonite application. But after that, contractors can apply Krystol Waterstop Grout to a keyway that’s formed with the help of the Crack Inducing Waterstop, adding extra Krystol technology protection.

All of that builds redundancy into the waterproofing system, giving it better protection from possible installation and material failures and from water ingress.

If I were interested in installing Krytonite and the rest of the Krystol Waterstop System, who should I go to?

We have territory managers and distributors all around the world who can help you. To find out who’s nearest to you, just send your request to Kryton on our contact us page or call Kryton’s headquarters anytime at 800-267-8280. There is always someone ready to help. And of course, if you happen to be in the eastern area of the USA, I am always happy to talk with you to see how Krytonite and the Krystol Waterstop System can best serve your concrete waterproofing needs.

Thanks again for chatting with us, Christian! We’re glad to see just how valuable Krytonite and the Krystol Waterstop System can be.

The post Interview: Why Krytonite™ Is the Unsung Hero of Construction Joint Waterproofing appeared first on Kryton.

Did you miss our previous article…
https://www.bellanovatravel.net/?p=41