post

What Gravel is Best for Driveways?

Gravel driveways are popular because they’re inexpensive, durable, and require little maintenance. You can choose from many different types, including crushed stone, pea gravel, quarry process, and more. 

But what gravel is best for driveways?

Each has pros and cons. Let’s take a look.

Quarry process

This type of gravel is made up of dust and pulverized rocks. After it’s poured, the dust settles into the cracks between the rocks to create a compact driveway. Because it forms a semi-solid surface, it doesn’t drain well, but it does make a great base layer for a driveway.

Jersey shore gravel

Jersey shore gravel is made up of rounded pebbles that do not compact well. That being said, they move really well under vehicles, but the driveway will need some edging so that the gravel doesn’t roll away. Because these pebbles come in beachy shades, they’re often found on the eastern shore (hence the name “Jersey shore” gravel).

Pea gravel 

Pea gravel is made up of small, round, naturally-weathered stones that can be used as a landscaping or driveway material. It’s not as durable as some of the other options, but it does have some benefits. It can create a more natural look, and it’s softer to drive on.

Because it has round edges, pea gravel isn’t as sharp as some of the other options available. This makes it ideal for driveways because cars won’t damage their tires or windows when they run over the rocks. It also has a natural look and is very affordable. 

Crushed stone #3 

Crushed stone #3 refers to gravel rocks that are up to 2 inches in diameter. It’s most often used as a sub-base layer in driveways because it provides a strong foundation for finer gravel to be poured over top. Its irregular shape allows for good drainage without compacting.

So, what gravel is best for a driveway? If you want to make sure that your driveway lasts as long as possible, then crushed stone is the most durable option. But if you’re looking for something more natural in appearance, then pea gravel is a good choice.

Whichever type of gravel you choose, be sure to consult with a professional at Port Aggregates before starting your project. We can help you choose the best type of gravel for your driveway. Contact us today to request a quote

The post What Gravel is Best for Driveways? appeared first on Port Aggregates.

Did you miss our previous article…
https://www.bellanovatravel.net/?p=293

post

Concrete Abrasion Resistance: The Bad, the Good, and the Better (Interview Part 2)

In our first part of this interview series, we discussed why concrete abrasion is such an issue for concrete construction and how it’s often treated. (For all the details, give it a read!) Most of the solutions discussed were shown to be complicated and ineffective. But we ended on a positive note, briefly talking about a solution that could offer a more worry-free way to increase concrete abrasion resistance.

That solution turned out to be Hard-Cem. As the only integral concrete hardener on the market, it offers a unique advantage to construction workers. With Hard-Cem, workers only have to add it to the concrete mix during batching, and that’s it. Hard-Cem doesn’t need a complicated application process and has been shown to be effective at what it does. And what it does is double your concrete’s wear life while increasing your concrete’s resistance to abrasion and erosion.

But is all that too good to be true? How does Hard-Cem actually perform? To look into it, we asked our previous contributors, Technical Director Jeff Bowman and Kryton Western Canada Territory Manager John Andersen, to give us the details.

So, why don’t we start by talking about the performance you can expect to see when you use Hard-Cem for increased concrete abrasion resistance?

Jeff: To answer that, let’s first review some of the test methods you could use for abrasion resistance.

There are several established test methods published by ASTM. But the one I’d like to highlight today is ASTM C627 (also known as the Robinson floor test based on the machine that is used for the testing).

Now, what’s really interesting about this test is that it applies a much higher load and a much longer test duration than many of the other methods that people might use.

During the Robinson floor test, Hard-Cem proved that it could double abrasion resistance compared to control concrete with 25 MPa (3,000 psi).
And early in the days of Hard-Cem’s development, Dr. Rusty Morgan, working with AMEC, recommended using this test and adapting it to increase the load and the test time to make it more useful as a test for the abrasion resistance of concrete. One of the advantages of this adaption is that because the test panel is quite large, it allows you to get a more realistic look at real-world finishing conditions that you might use for your concrete.

Essentially, during the test, wheels rotate around the concrete, allowing you to measure the depth of wear directly just by using a pair of depth calipers.

A common result for this is a very straightforward, plain concrete mix of 25 MPa [3,000 psi] with about 1.8 mm of wear depth. And after 5,000 revolutions, the depth of wear of the Hard-Cem concrete is reduced by about half compared to your plain concrete. So it creates a very significant increase in the abrasion resistance of that slab.

How does Hard-Cem perform against competing products like dry shakes?

Jeff: There are a range of dry shake materials, products, and aggregates.

Some of them do perform really well.

But if you look at our Robinson floor test results comparing Hard-Cem with different dry shakes, Hard-Cem came in with the lowest wear depth at just under 1 mm, whereas other dry shakes that were tested next to it had around 1 mm to 3 mm of wear depth.

So, you’re getting excellent abrasion resistance and you’re getting the additional advantage of a simple and reliable installation. And you’re not making any compromises on the performance of that concrete.

The Robinson floor test also showed that Hard-Cem would keep concrete wear depth to under 1 mm where several dry shake products could not.

re there any case studies about Hard-Cem’s performance?

John: Certainly! I can share a couple right now.

This first one happened 14 years ago. It was a CorLiving facility that was built half with Hard-Cem concrete and half with regular concrete. So it was a good in-service test of control concrete versus the performance you can see with Hard-Cem concrete.

The facility team later invited us in to have a look at the facility’s concrete to see how it performed. And there was a clear visual divide. In one area, it was nice and shiny with nice, straight edges on the concrete. This was the Hard-Cem concrete, and it was right next to the regular concrete, which had broken edges and was worn out and dusty.

It’s a good example of what you can see when you put Hard-Cem in your concrete.

14 years at a CorLiving facility had barely affected the Hard-Cem concrete on the left, while the untreated concrete on the right had already started to wear and gather dust.
 

Another good example is this second case study for a concrete company. They placed Hard-Cem concrete in the exit area for their concrete batch plant trucks as a way to demonstrate the performance of Hard-Cem to their customers.

Even after four years at a busy concrete batch plant truck exit, the Hard-Cem kept its brush finish, while the untreated concrete to the left had lost its surface paste.
After four years, they came back and took a look, and you could see the control concrete with the heavy machinery, loaders, and concrete trucks driving over it. It was really ground down and its concrete paste had worn away, whereas with the Hard-Cem concrete, you could still clearly see the original broom finish marks in it and its paste was completely intact.

 

 

We’ve proven that Hard-Cem can be highly effective with no application hassle. But does it have any other benefits worth talking about? We’ll look more into that on the third and final part of this interview series.

Download our e-book today to find out why the industry is moving away from surface-applied concrete hardeners.

The post Concrete Abrasion Resistance: The Bad, the Good, and the Better (Interview Part 2) appeared first on Kryton.

post

Choosing a Waterproofing Strategy for Below Grade Applications: A Fourth Alternative

Considering the right waterproofing strategy from the design stage is crucial for the success of below grade projects. However, there is no one right answer.

So when faced with this decision, the designer of a project will often start by selecting from several types of external membranes. These include unbonded, fully bonded, and compartmented systems. Each of which will affect the outcome of a project differently.

But no matter their choice, a designer will have many variables to consider.

That can be difficult to navigate. So to help you determine the best strategy for your project needs, let’s look at the factors that affect waterproofing decisions and outcomes and whether there’s a better alternative altogether.

The Factors That Affect the Selection and Outcomes of the Three Membrane Types

Designers typically select one of the three waterproofing membrane types based on the following factors:

Perceived risk of using the systemAccessibility for repairing system defectsQuality control tools of the selected systemOverall cost

Perceived Risk

Out of the three waterproofing membrane categories, there is one that is seen as less risky.

A bitumen waterproofing membrane rests partially unrolled on the ground.

Many View the Use of Fully Bonded Systems as the Reliable Waterproofing Strategy

The idea is that in case of failure, water cannot travel freely between the membrane and structural concrete, so any damage will be localized. That minimizes the cost and scope of the repairs needed.

Despite that big advantage, fully bonded systems also have their drawbacks. They are not flexible when bonded. They cannot bond properly to the structural concrete if not applied properly and in dusty conditions. And most importantly, these bonded systems are thin, making it easy for them to get damaged.

Still, these particular systems tend to remain less risky than others, even when it comes to application errors (see Figure 1).
On a graph that compares risk and application errors, unbonded membrane systems are the most at risk while compartmented membrane systems are at second place and fully bonded membrane systems are last.

A group of construction workers are working on pouring concrete at a worksite.

That Risk Changes, However, When Bad Concreting Practices Are Involved

Note how the dynamics change with bad concreting practices. The risk associated with application errors deviates as follows (see Figure 2).

The risk of application errors change when bad concreting practices are involved, making fully bonded membrane systems a bit riskier but still not as risky as unbonded membrane systems.

In this scenario, the bond between the membrane and structural concrete would have been compromised. Once that occurs, a fully bonded system will become riskier than a compartmented system due to the following reasons (among others):

Membranes in fully bonded systems tend to be thinner than ones in compartmented systemsThey don’t have horizontal and vertical protection as many compartmented systems doThey also do not have the same reactive system for repairs with flanges in each compartment

No matter the system, however, the risk related to application errors is shown as much steeper (as seen in Figure 2) when there are bad concreting practices involved. You need only compare the risk to a project with good concreting practices to see the significant impact (as shown in Figure 1).

ccessibility for Repairing System Defects

For stakeholders who prefer a waterproofing system that workers can access for repairs if something does go wrong, compartmented systems are perceived as the best (see Figure 3).

Why is that the case?

It’s mainly because it is possible to attempt to repair each leaking compartment of the system with injection flanges.

As for the other waterproofing systems, the unbonded one remains the riskiest, as it would be very hard to determine the source of its leakages.

Again, what adds to the complexity of just selecting the best perceived waterproofing system is a poor concreting application.

In this case, combining a poor concreting application with a compartmented system means water is more likely to migrate between compartments. That will increase the risk of the compartmented system’s waterstops not bonding adequately to the structural concrete. At the same time, isolating individual compartments in the system and repairing them with flanges will become less effective, since the water will be migrating between adjacent compartments. And that leads to a change in risk assessment (as seen in Figure 4).

The risk to application errors graph shows poor concreting practices increase the risk of compartmented membrane systems so that they are closer in terms of risk to fully bonded membrane systems.

Quality Control Tools

For stakeholders who depend on quality control tools to ensure that a membrane is installed properly, a polyvinyl chloride (PVC) compartmented system might be more appealing. Usually coming with the desired quality control tools, it has an edge over most types of fully bonded and unbonded systems.

The quality control tools that a PVC compartmented system typically comes with include a double-wedge welding of membrane overlaps. And that’s followed by pressure testing to guarantee that the overlap is properly welded.

Other quality testing measures for the overlaps in this case might include vacuum testing and spark testing.

All the above are great tools in theory. However, this quality control edge tends to be more theoretical than realistic in many instances. Such instances include (but are not limited to) vertical membrane applications. After all, it would be very unpractical to make a double-wedge welding joint and test each individual joint in vertical (or otherwise complicated) applications.

Overall Cost

Cost per system is not universal and differs in each market. But in general, an unbonded system is the cheapest, while fully bonded and compartmented systems tend to be more expensive.

However, when we consider what I call the membrane system lifetime value, cost assessment tends to be more complicated. The lifetime cost would include the initial cost of the system, the expected life of the system, and repair costs of the membrane over the service life of the structure. Once again, concreting practices play an important role with the associated costs of repair and replacement. Choosing a waterproofing system based on cost is therefore a complex decision that includes many variables, which are hard to quantify.

A group of construction workers at a worksite are helping to pour concrete for a project.

Why Concreting Adds Complexity to These Factors 

Waterproofing is an interconnected network of activities. So rationally selecting the appropriate system depends on many variables. A common variable that adds to the complexity of the selection and on the consequences associated with that selection is the quality of the concrete. That in turn is a function of the structure’s concrete mix and application. Therefore, it is impossible to assess the performance of the waterproofing membrane system in isolation without considering the concrete’s quality.

A construction worker is pouring KIM into concrete at the time of batching.

How to Simplify and Improve a Waterproofing Strategy with a Fourth Alternative

The fourth alternative is not a compromise between an unbonded, fully bonded, or compartmented system. A fourth alternative is a better waterproofing strategy. It’s a waterproofing solution that simplifies a designer’s choice while providing more predictable outcomes.

Simply put, the fourth alternative is to design and construct a waterproof structure that can sustain itself without external protection. That eliminates the concern of that external protection defecting or failing, as it transforms the concrete itself into a solid waterproof barrier. It also minimizes the need for extra labor or application time, as there is no membrane to install.

But how is this waterproofing strategy possible? What makes it work?

It all functions off the following principles.

The Structure Should Be Waterproof for Its Entire Intended Service Life

This is attained by using quality concrete, proper jointing systems, and adequate reinforcement.

The latter follows conventional construction methods, so let’s focus on those first two aspects.

To obtain quality concrete in this case, builders need to ensure that they use a suitable mix that is permanently waterproof. An easy way to do this is by applying a reactive waterproofing admixture, such as Kryton’s Krystol Internal Membrane
™
(KIM), with the established best practices for mixing, placing, and curing concrete.

Once added directly into the concrete, KIM disperses Krystol technology throughout the concrete mix, which remains dormant until water is nearby. When in the presence of water, the chemical technology reacts, forming interlocking crystals to block pathways for water in the concrete. That reduces the concrete’s permeability, shrinkage, and cracking. It also improves the concrete’s ability to self-seal for the rest of the structure’s life span.

But what about proper jointing systems?

Special consideration should be given to jointing details, including construction, expansion, and control joints. Using a combination of physical and chemical barriers is recommended for long-term performance. A good example of this is the Krystol Waterstop System. It offers three levels of protection for all jointing details. Depending on the level of protection chosen, the system might make use of two types of waterstops (one for sealing joints and one for crack control), a crystalline slurry that uses Krystol technology for concrete joints, and a crystalline grout.

For Extra Reliability, Designers Need to Determine a Suitable Repair Strategy

With a reliable waterproofing admixture and jointing protection system, a concrete structure should be quite safe.

But it’s important to include redundancies into a waterproofing system. It’s what gives a structure extra protection in case the situation does not go as planned. But to include those redundancies, designers need to consider a suitable repair strategy.

The repair strategy should be based on durable materials that are compatible with concrete. It should not be cosmetic and planned for the short term as it has to be able to fix the problem at its source. Otherwise, the problem will remain present, causing more damage in the long run.

dditional Protection Needs to Be Considered When Handling Projects That Are Considered High-Risk

These can include liveable basements, museums, and other structures where the cost of repairs is very high.

If that is the case for a project, a designer could add a membrane system to the waterproof structure. Selecting one will depend on the previously mentioned factors. But in general, as discussed earlier, the quality of concreting practices will affect how well a membrane type will perform. So it’s important to maintain good concreting practices no matter which type of waterproofing membrane system is chosen.

In short, the fourth alternative is a waterproofing strategy that fundamentally relies on a self-sustained waterproof structure free of application and additional labor concerns, a suitable repair strategy, and when necessary, the extra protection of a waterproofing membrane system.

Free e-book! Download it today to learn about the four aspects to consider when specifying crystalline waterproofing admixtures.

The post Choosing a Waterproofing Strategy for Below Grade Applications: A Fourth Alternative appeared first on Kryton.

Did you miss our previous article…
https://www.bellanovatravel.net/?p=204

post

Convert Your Concrete Slab from a Maintenance Liability to an Asset

When you think of concrete, it’s likely not long before you’re thinking about its durability. It’s one of the more well-known advantages of the material. And it’s why many choose to use concrete in construction. After all, no one wants to build with a material that couldn’t withstand the outside elements. So we turn to that concrete durability, relying on it enough to make concrete one of the most consumed materials on the planet, second only to water.

But concrete isn’t invulnerable. Depending on its mix, you could have a maintenance liability on your hands. Luckily, there is a way to avoid that. All it takes is being aware of how you can convert your concrete slab from a maintenance liability to an asset.

Keep in Mind That Slabs Can Be Prone to Wear and Tear

The first step in the right direction is to remind yourself that while durable, concrete slabs can still be prone to wear and tear.

It’s why you look for concrete hardening products. They’re meant to add an extra layer of protection to the concrete’s surface, sheltering it from abrasive and erosive forces that might otherwise degrade the concrete.

You can probably think of quite a few culprits responsible for this wear and tear. But as a refresher, let’s look into the specific types of abrasion and erosion you’re likely protecting your concrete from.

Number of Abrasive Forces Can Cause This

As noted in our latest e-book (which you can download and check out for yourself here), there are three specific types of abrasion-only wear:

Sliding abrasion — Also known as two-body abrasion, it’s what happens when a hard object slides across concrete. As it moves, the hard object will begin to gradually bore into the concrete, removing a bit of its surface each time. So if you have skids or some other item with a hard material moving back and forth over your concrete frequently, you’ll start to notice a rut in its surface.

 

Foreign particle abrasion — For any concrete projects that deal with vehicles, you’re sure to come across foreign particle abrasion. That’s because as the vehicles travel over the concrete, hard particles get trapped between the vehicle tires and concrete surface, and that wears down both materials simultaneously.

 

Rolling abrasion — A common sight in industrial spaces, rolling abrasion is what happens when wheels under a heavy load roll over a concrete surface. These wheels might come from carts, forklifts, or other wheeled equipment. But whichever one it is, over time, their movement over the concrete surface wears that surface out and creates noticeable dips in the concrete.

Erosive Forces Can Also Cause Similar Damage

One of the more common types of erosive wear is actually a combination of abrasion and erosion. And it’s often seen in hydraulic projects.

Why?

Well, these projects are typically ones that are surrounded by fast-moving water, such as dams and spillways. So they are more likely to encounter the abrasive effect of debris in the water grinding against their concrete surfaces. This debris might come in the form of silt, sand, gravel, rocks, or even ice. And while it’s roughing up the surface of the concrete, the surrounding water rushing by is gradually causing the concrete to erode.

A pale door shadowed in darkness stands ajar, showing an alarmingly red room past it.

That Can Open the Door to Various Costly Risks

If either abrasion or erosion starts to seriously affect your concrete to the point that you can see the damage, it can create a safety hazard, disrupt operations, and increase maintenance costs.

For Floor Slabs, That Can Involve an Increased Danger of Slipping, Tripping, and Falling

All those dips and ruts in concrete flooring caused by abrasive wear? They can pose a threat to your team’s personal safety.

While for a time, you might be able to work around the uneven flooring, you or someone else on your team is inevitably going to slip, trip, or fall. In fact, it’d be close to a statistical anomaly if you didn’t! Slips, trips, and falls make up a third of lost-workday injuries according to the Centers for Disease Control and Prevention. And as EHS Today notes, the primary cause for more than half of these injuries is due to an issue with a walking surface. So you can imagine the risk you take with keeping that uneven floor!

The cost of not implementing preventative measures for this kind of risk for businesses in the United States of America (USA) alone is about $70 billion a year overall in compensation and medical fees for workers.

For Road Slabs, That Means Traffic Accidents

Similar to how uneven flooring can pose a risk to people walking over it, uneven roads can be a risk to those driving.

Initially, that unevenness might be a slight difference in road surface from all that foreign particle abrasion. But eventually, that slight dip might lead to potholes or a fully uneven road. It also increases tire wear, making the vehicles on the road less efficient and safe to use.

All of which increases the risk for roadway accidents. Potholes on their own cause around $3 billion in vehicular repairs annually in the USA. And in Canada, each year, the cost for drivers as a whole is increasing by that same amount because of increased vehicular repairs and maintenance and general vehicular damage due to poorly maintained roads.

Hazards like potholes pose an even greater risk for those on motorcycles and bikes.

Those on motorcycles, according to the Motorcycle Safety Foundation, may crash when encountering potholes. That can be a significant concern as motorcycle incidents have a 29% higher fatality risk than ones that occur with automobiles and light trucks.

For cyclists, they can end up with permanent nerve damage. But that’s not the worst-case scenario. Much like those on motorcycles, cyclists have a higher fatality rate when it comes to crashing. For instance, since 2007, in Britain, potholes alone have killed at least 22 cyclists and seriously injured another 368.

The Potential Damage Doesn’t Stop There Either

Of course, worker injuries and vehicular damage aren’t the only costs to consider when facing abrasion and erosion damage. You also have productivity, equipment, and structural loss to worry about.

For instance, workers operating forklifts on an uneven surface are likely to drive more slowly to avoid tipping over, reducing worksite productivity. And if they don’t? You’ll likely be paying to repair or replace that forklift and any items it happened to be carrying.

Using fully automated equipment won’t do much to overcome this obstacle on its own either as an uneven surface can prevent it from operating properly.

And what about structures? With enough abrasion and erosion, owners will have to close down for repairs and replace large sections of concrete structures, from floors all the way to hydro dams. All of which is extremely costly to any business and doesn’t endear owners to the concrete they used.

A construction worker is adding Hard-Cem into his concrete mix during batching.

But Your Concrete Slab Doesn’t Have to Be a Maintenance Liability

You just need an effective concrete hardening solution.

Your first thought might be to use conventional surface-applied concrete hardeners like dry shake hardeners or liquid hardeners. However, those come with a number of setbacks.

Dry shake hardeners, for one, come with a complex application process. It’s not a one-and-done deal. Instead, a worksite team has to prepare the worksite first. That means removing excess concrete and preparing the remaining concrete. Then, depending on your chosen hardener’s material, you may have to take an extra step and use a wood bull float and then a machine float. After that, the team can finally move on to actually applying the dry shake hardener, which will cover a couple millimeters of the concrete’s surface.

However, even that part isn’t without complications. Dry shake hardeners can only be applied during a specific time and type of weather. Pick the wrong time and you can end up with delaminated concrete or an inability to even apply the dry shake.

At the same time, this hardener makes use of a toxic material known as silica dust, which means a worksite team needs to meet the proper safety measures to keep workers safe and comply with legal restrictions.

On the other hand, while not as frustrating to apply or as hazardous as dry shake hardeners, liquid hardeners are often misrepresented. They were first sold as dust reducers to help with defective concrete slabs that had a dusty surface. But now, they’re expected to harden concrete, which they do very poorly.

(For more reasons and data on why these aren’t effective solutions and more, take a look at our e-book on the topic!)

So, what can you use instead?

pply Hard-Cem to Increase Your Concrete Slab’s Resistance to Wear and Tear

Unlike any other concrete hardener on the market, Hard-Cem is an integral hardener. That means it applies its hardening properties throughout a concrete mix to form one solid abrasion- and erosion-resistant material. Essentially, it’s an admixture that you add into the concrete mix during batching. At that time, the admixture will permeate the entirety of the mix, giving it a harder concrete paste and reducing fine and coarse aggregate exposure. It does all this to help the concrete effectively resist abrasion and erosion.

Your Concrete Slab Will Gain Many Other Benefits as Well

More specifically, when using Hard-Cem, you’ll double the wear life of your concrete.  Because it does last that long and can resist abrasion and erosion, Hard-Cem-treated concrete comes with fewer maintenance fees. So you won’t need to resurface or replace your concrete as often. And you won’t need to use as much cement. That can increase your savings on carbon emissions by as much as 40%!

In some cases, this has even helped construction teams earn LEED certifications.

All you need to do to get these advantages is to throw the admixture and its dissoluble bag into the concrete mix during batching. There are no extra application steps, toxic silica dust, or inefficiencies to worry about. So you don’t have to spend money or time on hiring extra labor or managing application errors. Hard-Cem does all the heavy lifting, giving your mix the thorough durability it needs as soon as it’s added.

Hard-Cem also offers incredible versatility. It can work for a variety of projects and help harden horizontal, vertical, and inclined concrete. And it is the only hardener capable of being used for air-entrained concrete.

In short, it increases your concrete’s durability, speeds up your construction, reduces application costs, provides universal compatibility for different concrete mixes, and makes it all more sustainable.

A construction worker is guiding concrete mix down into the area it needs to be poured in.

It Just Takes the Right Concrete Mix Ingredients

With Hard-Cem added into your concrete mix, your concrete slabs will be an asset to your project. They’ll need less maintenance over the years, help you reduce your carbon emissions, and most importantly, keep abrasion and erosion at bay to keep your concrete structures standing for as long as possible.

Download our e-book today to find out why the industry is moving away from surface-applied concrete hardeners.

The post Convert Your Concrete Slab from a Maintenance Liability to an Asset appeared first on Kryton.

post

What is Reinforced Concrete?

A lot of you will be familiar with reinforced concrete as a building material, but may not be aware of the finer details. Commercial concrete is often a good solution for building work, we will be discovering a bit more about why this is the case, and the best ways to go about using the material for your building projects.

Everything You Need to Know About Reinforced Concrete

Commercial Concrete

This is concrete used as part of a building project, often used to create or enhance business facilities, industrial buildings, warehouses and retail stores. In an average building, you will find commercial concrete in plenty of spaces, such as the walls, floors and even some architectural details. A large majority of commercial buildings would have been put together with heavy use of commercial concrete. Like domestic concrete it has many benefits when used on a building site, durability being one of the most obvious.

Domestic Concrete

Domestic, or residential concrete usually has less demand placed on it in terms of structural performance and durability, but in itself, it is still considered a durable building material. Domestic concrete floors and pavements usually require a lower strength mix design and lighter reinforcement than commercial concrete.

Concrete Pumps

The purpose of a concrete pump is to have a tool that can convey liquid concrete. This works by having one piston drawing liquid concrete into a cylinder from a hopper while the other piston simultaneously pushes concrete out into discharge pipes. There will be a valve which can determine the cylinder that is open to the concrete hopper and the one which is open to the discharge pipes, which gets switched over each time the pistons reach an endpoint, with the process continuing with the first cylinder now discharging and the second drawing fresh concrete from the hopper.

Concrete Services

If you need to deal with reinforced concrete there are a couple of things that are crucial to consider. You need to make sure that if you are laying the material yourself you know what you are doing with it. You must also make sure that the concrete is of a high-quality standard. You must have the facilities to mix it correctly as well as an appropriate skill/strength level to physically handle it/the required machinery.

Alternatively, you may need to use the services of a professional concrete company, like Base Concrete, to prepare and lay the concrete and get your building project completed. Commercial concrete can be a great asset to all sorts of projects and can be purchased with some very good deals, just make sure you are only ever involved in using the services of professional and trusted companies. It is almost a guarantee that your area will have quite a lot of concrete services operating in your area where you can purchase your desired amounts of commercial concrete or have a service bring around the material and lay it on your behalf.

So, for all your concrete needs, contact Base Concrete today on 01442 389105. For more details, visit our contact page.

The post What is Reinforced Concrete? first appeared on Base Concrete.

post

The Many Uses of Concrete

Where would we be without concrete? It’s one of the most versatile and essential products for almost all construction projects across the world. It’s a substance that fills our world and can be seen in almost everything we see, but also one that is so easily overlooked.

There are so many uses for concrete. Its applications and uses are more varied and more widespread than you can imagine. There are over 20 different types of concrete that are used in a multitude of construction projects, but what are the most popular applications for it? What is it that makes concrete such an advantageous material to use, and how is it used in both domestic and commercial developments. Let’s take a look.

Origins of Concrete

Concrete, in one form or another, has been with us since 6500 BC. It can be traced back to what is now, the United Arab Emirates, where Nabataea traders created concrete floors, houses and even underground cisterns.

The Egyptians were using it to build the pyramids in 3000 BC, where they used mortars of lime and gypsum to create their version of cement. It was also used, not surprisingly perhaps, to help construct the Great Wall of China. It didn’t become concrete, at least what we recognise it as today, until the 1800s, but since then, its uses have grown more and more.

Buildings

For any of us living in a house or working in a building, it’s likely to be made from brick and mortar to some degree. In the UK, it took off after World War II as part of the rebuilding efforts. Nowadays, it’s probably the most popular application of concrete in the modern age and will be for centuries to come.

Foundation

Even if the building itself is more steel and glass, its foundations will be made from or secured in, concrete. Concrete is so popular because it won’t burn or rot, which means that the foundation is going to maintain its strength and rigidity for many years.

Roads and Bridges

As we move up in the world, the very streets you walk on and the bridges you use to cross those roads will also be made of concrete. Again, concrete wins against other materials because of its durability and safety. It might not be obvious, but another advantage of concrete in these environments is that it offers better reflectivity at night. Of course, it’s not just pedestrians it has to support, but because it can hold heavier weights, such as cars and trucks, it’s the perfect material to use.

Why Concrete has so Many Uses

The applications for concrete don’t stop there. They are only the start. Concrete is so popular in different projects simply because of its adaptability. It’s not sensitive to moisture, can be shaped and moulded into almost any design, affordable and is recyclable.

It has a very long lifespan, doesn’t release any dangerous organic compounds and is just as safe for inhabitants. It’s easy to forget the difference concrete has made to our world, but just look around and you’ll see that it’s everywhere.

Contact Us

Thank you for reading this blog post. Should you be looking for any mixes or perhaps ready mixed concrete itself, then we can deliver it straight to your door. So, if you have any upcoming tasks, then get in touch today on 01442 389105 or visit our contact page for more details.

The post The Many Uses of Concrete first appeared on Base Concrete.

post

The Different Types of Concrete Pumps

Construction projects require a constant supply of concrete, and without it, the construction project will be impossible to complete. Construction projects are usually faced with the issue of how to efficiently handle a large quantity of concrete manually. To resolve this issue, the use of the different types of concrete pumps at construction sites was invented.

This invention made the handling and placing of large concrete easier. Concrete pumps also made the construction process of tall buildings, skyscrapers and large construction projects more organised and efficient. The market has different types of concrete pumps available according to the size of the construction projects. There are also many concrete services which allow concrete pumps to be hired.

The different types of concrete pumps used for the diverse construction project are cost-effective. During construction projects, it is very crucial to choose the right concrete pumps that are economical, efficient and one that is specifically designed for your particular construction project. Below are the different types of concrete pumps and their benefits.

Concrete Pumps can be categorised into boom pumps, concrete pumps trucks, stationary pumps and concrete line pumps.

Boom Pump

A boom pump is a type of concrete pump which is characterised by a controlled hydraulic arm where concrete is placed and dispersed accurately in the right direction where it’s needed. 

They’re usually attached to a truck. Boom pumps are normally used for huge construction projects. It can easily navigate any barrier on its way and provides the right portions and angles during the construction process.

It’s easy to manoeuvre a boom pump. And it can churn out a large amount of concrete at a fast speed. It’s highly recommended to use the boom pumps for large construction projects.

Stationary pump

The stationary pump, unlike boom pumps, is characterised by less manoeuvrability. It’s usually attached to a truck or mounted on a trailer and the concrete is pumped through rubber hoses or steel pipelines. Working with a stationary pump requires that the direction of the pipeline be directed to the particular portion where the concrete is needed.

Stationary pumps are known for pouring concrete at a slower speed than other types of pump. So it’s recommended where the demand for a smaller volume of concrete is required for a construction project.

Specialised Usage Pump

Specialised usage pumps are one of the different types of concrete pumps that are readily available. Specialised Usage Pumps are a premium option. They can be designed for special type of construction projects, such as construction projects in mines or tunnels.

Concrete Line Pumps

Concrete line pumps are usually referred to as a trailer-mounted concrete pump or truck-mounted concrete pump because of its arrangement. The arrangement features a line pump attached to the trailer or the back of the truck. They are compact and recommended for small construction projects.

When choosing the right type of concrete pumps for a particular construction project, factors like the design of concrete mix, vertical and horizontal distances, size of the aggregate being used, volume or quantity of concrete should be carefully considered. Thank you for reading this month’s blog. Should you have any queries or perhaps are looking for equipment to hire, call us on 01442 389105 or visit our contact page for more details.

The post The Different Types of Concrete Pumps first appeared on Base Concrete.